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We consider the time evolution of a wave packet representing a quantum particle moving in a geometrically
open billiard that consists of a number of fixed hard-disk or hard-sphere scatterers. Using the technique of
multiple collision expansions we provide a first-principle analytical calculation of the time-dependent autocor-
relation function for the wave packet in the high-energy diffraction regime, in which the particle’s de Broglie
wavelength, while being small compared to the size of the scatterers, is large enough to prevent the formation
of geometric shadow over distances of the order of the particle’s free flight path. The hard-disk or hard-sphere
scattering system must be sufficiently dilute in order for this high-energy diffraction regime to be achievable.
Apart from the overall exponential decay, the autocorrelation function exhibits a generally complicated se-
quence of relatively strong peaks corresponding to partial revivals of the wave packet. Both the exponential
decay �or escape� rate and the revival peak structure are predominantly determined by the underlying classical
dynamics. A relation between the escape rate, and the Lyapunov exponents and Kolmogorov-Sinai entropy of
the counterpart classical system, previously known for hard-disk billiards, is strengthened by generalization to
three spatial dimensions. The results of the quantum mechanical calculation of the time-dependent autocorre-
lation function agree with predictions of the semiclassical periodic orbit theory.
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I. INTRODUCTION

One of the main objectives of the field of quantum chaos
is to study the quantum mechanics of systems that are cha-
otic in the classical limit, and to find what properties of the
classical systems appear crucial for the quantum description.
There are some common approaches to the problem. One can
explore the energy spectra of quantum analogs to classically
chaotic, bounded systems �1–5� or investigate scattering
resonances in the complex energy plane for unbounded quan-
tum systems with chaotic classical repellers �6–11�. Interest-
ing results relating the energy spectra of closed systems to
the scattering resonances of the complementary open sys-
tems �defined as the region “outside” the closed system� are
also known �12�. Another approach focuses on the time-
dependent description, which involves such quantities as the
quantum state autocorrelation functions �13–18� and the
Loschmidt echo or fidelity �19–21�. In this paper we con-
tinue the second approach and address the time evolution of
the autocorrelation function for quantum particles traveling
in hard-disk and hard-sphere billiards in two and three spatial
dimensions, respectively.

We have previously studied the short time dynamics of a
small Gaussian wave packet in arrays of hard-disk scatterers
�18�. The wave packet was considered to be much smaller
than the disk radius, and its evolution was limited to times
shorter than the Ehrenfest time �1�, at which time the wave
packet size becomes comparable with the scatterer size. The
goal of the present paper is to extend the previous results by
investigating the wave packet dynamics in the limit of long
times, much longer than the Ehrenfest time. Here, we show
that substantial progress can be made for hard-ball �hard disk
or sphere� scattering systems containing only a small number

of scatterers, and for wave packets in the diffraction regime,
to be further specified below.

In a series of seminal papers �6,7,22� Gaspard and Rice
studied classical, semiclassical, and quantum properties of a
three-disk scattering system, in which a point particle moves
in two dimensions in the presence of three fixed, impen-
etrable disk scatterers. The disks have the radius a, and their
centers are placed at the vertices of an equilateral triangle of
side R. Below we will refer to this scattering system as to the
three-disk equilateral billiard to distinguish it from other
three-disk billiards, in which the scatterer centers form isos-
celes or generic triangles. The latter scattering systems will
be referred as to the isosceles billiard and the generic triangle
billiard, respectively. The classical version of the three-disk
system is known to have a fractal repeller with the positive
Kolmogorov-Sinai entropy �6�. The quantum dynamics of a
particle in the three-disk billiard is largely determined by
scattering resonances, whose distribution in the complex en-
ergy plane reflects the chaotic properties of the correspond-
ing classical system �6,7�.

In this paper we address the time evolution of initially
localized wave packets in such hard-disk scattering systems
as the two-disk billiard and the three-disk equilateral, isosce-
les, and generic triangular billiards. We also extend our cal-
culations to include other hard-sphere scattering systems in
three spatial dimensions. As a tool for quantifying the wave
packet dynamics we consider the autocorrelation function
C�t� defined as the overlap

C�t� = ���0��t��2, �1�

where ��0� is the initial quantum state of a billiard, and ��t�
is the quantum state obtained from the initial one by the time
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evolution through time t under the Hamiltonian H:

��t� = e−iHt/���0� . �2�

We construct the quantum propagator e−iHt/� for a dilute
hard-disk billiard using the multiple collision expansion
technique �23,24�. Then, we apply this propagator to an ini-
tially localized wave packet ��0�, corresponding to a highly
energetic particle traveling through the system, and calculate
the autocorrelation function C�t�. The following two assump-
tions allow analytical treatment of the problem: �i� the scat-
tering system is considered to be dilute and �ii� the quantum
particle is restricted to have a short de Broglie wavelength.
�We will give further details below.� These assumptions limit
the validity of our results for the autocorrelation function to
a certain time range. The latter can be quite long: it is
bounded from below by the Ehrenfest time of the system,
and typically extends over a large number of Ehrenfest times.
Therefore, this work should be considered as an attempt to
analytically describe the dynamics of initially localized wave
packets over long times during which the quantum particle
explores all the scattering system, and its wave function be-
comes spatially extended.

It was pointed out by Gaspard et al. �8� that the time
evolution of a wave packet in a hard-disk scattering system
exhibits an overall exponential damping controlled by the
location of the scattering resonances in the complex energy
plane. As a result of this damping one expects the wave
packet autocorrelation function C�t� to decay in an
exponential-like manner as well. We explicitly calculate the
autocorrelation function for wave packets in various hard-
disk billiards and investigate the structure of its time decay.
We find that the decay consists of a sequence of sharp peaks
with the exponentially decreasing envelope. The peaks re-
flect the phenomenon of the wave packet partial reconstruc-
tion due to interference of different classical periodic orbits
in the billiard. The maxima of the peaks occur at times at
which the classical particle, having the momentum equal to
the average momentum of the wave packet, would return to
its initial phase-space point. Although the long-time autocor-
relation function peaks have the same origin as the ones in
the short-time autocorrelation function �15,18�, the peaks at
longer times result from the constructive interference of a
large number of classical trajectories whereas only a single
classical path is responsible for the wave packet reconstruc-
tion during times shorter than the Ehrenfest time.

The envelope of the autocorrelation function for a two-
dimensional hard-disk billiard decays exponentially with
time e−�t with the rate � approximately equal to the differ-
ence of the mean positive Lyapunov exponent � and twice
the Kolmogorov-Sinai �KS� entropy per unit time hKS of the
repeller of the corresponding classical system, i.e.,
���−2hKS. This decay rate is nothing but the quantum es-
cape rate originally obtained by Gaspard and Rice �6�. Our
generalization to three spatial dimensions shows that the en-
velope of the wave packet autocorrelation function also de-
cays exponentially e−�3Dt with the decay rate �3D=�1+�2
−2hKS, where the place of � in the expression for � is taken
by the sum of the two mean positive Lyapunov exponents �1
and �2 of the classical hard-sphere system.

The paper is organized as follows. In Sec. II we calculate
the autocorrelation function C�t� for wave packets in two-
disk and various three-disk scattering systems using the
method of the multiple collision expansion. We show that the
structure of C�t� is generally quite intricate, and we provide
explanations of its main features. Section III presents an al-
ternative description of the autocorrelation function decay
based on the semiclassical arguments. While the semiclassi-
cal method described here does not provide as much detail
about the autocorrelation functions as do the multiple scat-
tering methods, it does provide information about the relative
strengths of the peaks and their location. Moreover this
method allows us to obtain information about more compli-
cated systems that are difficult to treat using more exact
methods. For example, in this section we use the semiclassi-
cal method to treat generic three disk scatterers, and to gen-
eralize our methods to three spatial dimensions to describe
the wave packet dynamics in two-, three-, and four-sphere
scattering systems. Our conclusions and discussions are con-
tained in Sec. IV of the paper.

II. HARD-DISK SCATTERING SYSTEMS

A. General formulation

We consider a particle of mass m placed among a collec-
tion of N fixed hard-disk scatterers of radius a centered at
position vectors R j, with j=1,2 , . . . ,N. The Hamiltonian of
the system can be written as

H = H0 + 	
j=1

N

Vj , �3�

where H0 is the free particle Hamiltonian, and the hard-disk
scatterer potentials are given by

Vj�r� = 
+ � for �r − R j� � a ,

0 for �r − R j� � a .
� �4�

The time-domain propagator G�t�=e−iHt/� satisfying the
Schrödinger equation with the Hamiltonian H evolves an ini-
tial quantum state ��0� in time in accordance with Eq. �2�.
The corresponding energy-domain propagator is obtained by
means of the positive time Fourier transform

G�E� =
1

i�
�

0

+�

dtei�E+i0�t/�G�t� =
1

E − H + i0
. �5�

The inverse transform is given by

G�t� =
i

2�
�

−�

+�

dEe−iEt/�G�E� , �6�

where we consider time t to be strictly positive. Although it
is a formidable problem to construct the time-domain propa-
gator directly, one can employ the method of multiple colli-
sions �23,24� to obtain a series expansion for the energy-
dependent propagator.

The multiple collision expansion of the energy-dependent
propagator represents G�E� as an infinite sum over possible
collision sequences that the quantum particle can undergo:
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G = G0 + 	
j

G0TjG0 + 	
j

	
k�j

G0TjG0TkG0

+ 	
j

	
k�j

	
l�k

G0TjG0TkG0TlG0 + ¯ , �7�

where G0= �E−H0+ i0�−1 is the free particle propagator in
the energy domain, and the binary collision operator Tj, also
known as the T matrix, is defined by the multiple collision
expansion �7�, written for a system containing only the jth
scatterer, i.e.,

Gj 
1

E − H0 − Vj + i0
= G0 + G0TjG0. �8�

Hereafter all G and T operators are given in the energy do-
main unless the time dependence is specified explicitly. Here,
Gj is the propagator for a particle moving in two-
dimensional space with only one scatterer located at point
R j.

The momentum-space matrix elements of the binary col-
lision operator for the hard-disk potential given by Eq. �4�
were calculated by Correia �25�. For a particle of energy E
=�2	2 /2m, where 	 is the magnitude of the particle’s wave
vector, the matrix element �k�Tj�k�� of the binary collision
operator, relating two generally different momentum states k
and k�, is given by

�k�Tj�k�� = 2�a
�2

2m
e−i�k−k��Rj 	

l=−�

+�

eil�
k−
k��

� 
 �k��2 − 	2

k2 − �k��2 �k�Jl�ka�Jl−1�k�a�

− kJl−1�ka�Jl�k�a�� + k�Jl�ka�Jl−1�k�a�

− 	Jl�ka�Jl�k�a�
Hl−1

�1� �	a�
Hl

�1��	a� � , �9�

where �k ,
k� and �k� ,
k�� are the polar coordinates of the
wave vectors k and k�, respectively, Jl is the Bessel function
of the first kind of order l, Hl

�1� is the Hankel function
of the first kind of order l. Hereafter, the following normal-
ization conditions are adopted: �r �r��=��r−r��, �k �k��
= �2��2��k−k�� and �r �k�=eik·r, so that the completeness
relations read �dr�r��r�=1 and � dk

�2��2 �k��k�=1. Using Eq. �9�
together with the expression for the free particle propagator
matrix element

�k�G0�k�� =
2m

�2

��k − k��
	2 − k2 + i0

, �10�

Correia �25� has calculated the matrix element describing a
sequence of n successive collisions of the particle with scat-
terers s ,r ,q , . . . , p , j and i:

�k�TiG0TjG0TpG0 ¯ TqG0TrG0Ts�k��

= �− 1�n4i
�2

2m
e−ik·Ri+ik�·Rs

� 	
li,lj,lp,. . .,lq,lr,ls=−�

+� � Jli
�ka�

Hli
�1��	a�

eili�
k−
ij+�/2��Hli−lj

�1� �	Rij�

� � Jlj
�	a�

Hlj

�1��	a�
eilj�
ij−
jp��Hlj−lp

�1� �	Rjp� ¯

� � Jlr
�	a�

Hlr
�1��	a�

eilr�
qr−
rs��Hlr−ls
�1� �	Rrs�

� � Jls
�k�a�

Hls
�1��	a�

eils�
rs−
k�−�/2�� . �11�

Here �Rij ,
ij� are the polar coordinates of the scatterer sepa-
ration vectors Rij Ri−R j, where i , j=1,2 ,3 , . . . ,N.

Equation �7� together with Eq. �11� allows one to calcu-
late the energy-domain autocorrelation amplitude for an ini-
tial quantum state ��0�,

�E�  ��0�G�E���0�

=� dk

�2��2 � dk�

�2��2 ��0�k��k�G�E��k���k���0� . �12�

The time-domain autocorrelation function �1� is then ob-
tained from the energy-dependent overlap with the help of
the inverse Fourier transform given by Eq. �6�, namely,

C�t� = ��t��2, �13�

with the time-domain autocorrelation amplitude

�t�  ��0�G�t���0� = �
−�

+� dE

2�
e−iEt/��E� . �14�

B. Wave packet

In order to calculate the autocorrelation function due to
the propagator given by Eqs. �7� and �11� we consider a
circular wave packet defined by

�0�r� =
eik0·r

���2
��� − �r − R0�� . �15�

The wave packet represents a particle, with the average mo-
mentum �k0, located at the position R0. Here � is the Heavi-
side step function, and the real quantity � has an apparent
meaning of the wave packet dispersion. Our choice of the
wave packet is motivated by the demand to facilitate com-
plex energy plane integration in the transformation of the
autocorrelation overlap from energy to time domain, Eq.
�14�. As we will see in Sec. III the time decay of the wave
packet autocorrelation function does not depend significantly
on the initial wave packet, as long as the latter is sufficiently
localized in the coordinate and momentum space.

Let us now fix the system of coordinates by imposing
R0=0, so that the particle is initially located at the origin.
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The circular wave packet does not overlap with any of the
disk scatterers if the following N conditions are satisfied:

Rj � a + �, for j = 1,2,3, . . . ,N . �16�

The momentum representation of the wave packet is given
by

�0�k,k0� = 2��
J1��k − k0���

�k − k0�
 �0�k,k0;
k − 
k0

�

= 	
l=−�

+�

�l�k,k0�eil�
k−
k0
�, �17�

with

�l�k,k0� = 2��
kJl+1�k��Jl�k0�� − k0Jl�k��Jl+1�k0��

k2 − k0
2 .

�18�

Here �k0 ,
k0
� are the polar coordinates of the wave vector k0.

The Appendix provides the derivation of the above expan-
sion.

We are now in a position to calculate the part of the wave
packet autocorrelation overlap due to a sequence of n suc-
cessive collisions of the particle initially at R0 with scatterers
s ,r ,q , . . . , p, j, and i. Performing the integration over the
k-space we obtain

��0�G0TiG0TjG0TpG0 ¯ TqG0TrG0TsG0��0�

= �− 1�n 1

4i

2m

�2 	
l,li,. . .,ls,l�=−�

+�

��l�	,k0�eil�
0i−
k0
−�/2��*Hl−li

�1�

��	R0i�� Jli
�	a�

Hli
�1��	a�

eili�
0i−
ij��Hli−lj

�1� �	Rij�

� � Jlj
�	a�

Hlj

�1��	a�
eilj�
ij−
jp��Hlj−lp

�1� �	Rjp� ¯

� � Jls
�	a�

Hls
�1��	a�

eils�
rs−
s0��Hls−l�
�1� �	Rs0�

� ��l��	,k0�eil��
s0−
k0
−�/2�� . �19�

The polar coordinates of the disk separation vectors R0i
R0−Ri and Rs0Rs−R0 are given by �R0i ,
0i� and
�Rs0 ,
s0�, respectively; the asterix denotes the complex con-
jugate.

C. Diffraction regime approximation

The expression for the overlap in Eq. �19� is exact. We
will now derive an approximation of this overlap for the case
of a dilute scattering system. In the dilute hard-disk billiard,
Rij �a, so that the high argument approximation of the Han-
kel functions by exponentials can be used to greatly simplify
the analysis of the autocorrelation function.

Let us start with determining the angular momentum
states dominating the autocorrelation function for a given

value of 	. The ratios inside the brackets in Eq. �19�,
Jl�x� /Hl

�1��x�, are small for l�x, since Jl�x� has its first maxi-
mum at x� l. �Figure 1 illustrates the latter argument for
cases of l=10 and l=50.� Consequently, the main contribu-
tion to the multiple sum in Eq. �19� comes from terms with
li , lj , . . . , ls running from −�	a� to +�	a�, and l , l� running
from −�	�� to +�	��, where the square brackets denote the
integer part. At the same time, the large argument approxi-
mation of the Hankel function �26,27�

Hl
�1��x� �� 2

�ix
exp�i�x −

�l

2
�� , �20�

holds for

x �
1

2
�l2 −

1

4
� . �21�

Therefore, if 	Rij � �2	a�2 /2, and 	R0i, 	Rs0� �	a+	��2 /2
we can use this approximation in Eq. �19� to get

��0�G0TiG0TjG0 ¯ TrG0TsG0��0�

� −
m

�2� i

2�	
�1/2

�0
*�	,k0;
0i − 
k0

�

�
ei	R0i

�R0i

f	�
0i − 
ij�
ei	Rij

�Rij

¯

�f	�
rs − 
s0�
ei	Rs0

�Rs0

�0�	,k0;
s0 − 
k0
� , �22�

where

f	�
� = − � 2

�i	
�1/2

	
l=−�

+�
Jl�	a�

Hl
�1��	a�

eil
 �23�

is the scattering amplitude �24� describing scattering of a
quantum particle of energy E=�2	2 /2m from a hard disk of
radius a at an angle 
.

FIG. 1. The absolute value of the ratio Jl�x� /Hl
�1��x� as a func-

tion of x / l for two cases l=10 and l=50. The ratio significantly
differs from zero only for x� l.
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The approximation given by Eq. �22� is only valid for
energies satisfying the conditions �see Eq. �21� and the dis-
cussion right below it�

	 �
Rij

2a2 ,
2R0i

�a + ��2 for i, j = 1,2,3, . . . ,N . �24�

These conditions bear a simple physical meaning. Suppose
Rij ,R0i�R, and ��a, then inequalities �24� can be written
as R�2a /�, with �=1/	a. The latter has a meaning of the
angle of diffraction of a wave with the wavelength 1/	 on an
obstacle of size a, so that 2a /� represents the estimate of the
shadow depth, which is the largest distance over which the
geometrical shadow can exist. Then, the conditions �24� sim-
ply mean that the scattering system is so dilute that the av-
erage separation between scatterers is much greater than the
shadow depth for the given particle’s energy. This is equiva-
lent to stating that Eq. �22� is only valid in the diffraction
regime, i.e., the diffraction effects prevail over the geometri-
cal shadow, so that no disk scatterer can be screened from the
particle by other disks. In the case of a sufficiently dilute
scattering system R�a, the inequalities �24� are satisfied for
a significant range of energies, so that Eq. �22� provides a
good approximation of the autocorrelation function for wave
packets confined to this energy range.

Equation �22� has an apparent structure. The initial wave
packet ��0� is propagated through a sequence of free flight
and collision events, each of which contributes by a corre-
sponding product term to the expression for the autocorrela-
tion overlap. Indeed, the latter is multiplied by ei	R /�R each
time the particle experiences a free flight through some
length R, and by f	�
� each time the particle scatters off a
disk at an angle 
. The same wave function construction
algorithm was earlier used in Ref. �6� for semiclassical quan-
tization or the three-disk scattering problem. Nevertheless, it
is important to note that, at least for the autocorrelation func-
tion calculation, this method fails in the true semiclassical
limit 	→�, due to violation of the conditions given by Eq.
�24�, and is legitimate only in the diffraction regime approxi-
mation defined by Eq. �24�.

A closer examination of Eq. �22� shows that only such
initial wave packets that represent particles moving in the
vicinity of system’s classical periodic orbits can exhibit a
significantly nonzero autocorrelation function for times cor-
responding to a number of collision events of the counterpart
classical particle. To see that, suppose that the wave packet
��0� given by Eq. �17� is well localized in momentum space,
i.e., the particle’s de Broglie wavelength �1/k0��. Then,
the overlap given by Eq. �22� is negligible unless 
0i�
s0
�
k0

. Indeed, �0�k ,k0 ;
�, if considered as a function of the
angle 
 between the wave vectors k and k0, is sharply
peaked at 
=0, and rapidly vanishes as k turns away from
k0. This means that the autocorrelation overlap ��0�G��0�
gets a significant scattering contribution in addition to its
free-streaming part ��0�G0��0� �which is negligible for dilute
systems� only if the wave packet is initially located on and
moves along a line connecting centers of any two disks in the
scattering system. This happens because the reflection wave
produced by a disk at the last scattering interferes destruc-

tively with the initial wave unless the two waves have their
wave vectors pointing almost in the same direction. Hence,
one can expect substantially nonzero values of the autocor-
relation function only for such initial wave packets that rep-
resent classical particles moving along lines connecting scat-
terer centers, and therefore traveling in the vicinity of
unstable periodic orbits of the hard-disk scattering system.

We will now use the propagator given by Eqs. �7� and
�22� to calculate the autocorrelation function for the circular
wave packet defined in Eq. �17� in three different scattering
systems: two-disk, three-disk equilateral, and three-disk isos-
celes billiards. The autocorrelation overlap in the energy do-
main can be written as

�E� = ��0�G��0� = 0�E� + S�E� , �25�

where 0�E�= ��0�G0��0� is the free flight part of the over-
lap, and the scattering part S�E� is determined by all pos-
sible collision events

S�E� = 	
j

��0�G0TjG0��0� + 	
j

	
k�j

��0�G0TjG0TkG0��0�

+ 	
j

	
k�j

	
l�k

��0�G0TjG0TkG0TlG0��0� + ¯ . �26�

The series in Eq. �26� can be summed explicitly for the three
above-mentioned billiard systems using the diffraction re-
gime approximation �24�, together with the assumption that
the initial wave packet has sufficiently high energy, as will
be described below.

D. Two-disk billiard

The simplest of all hard-disk systems is the two-disk bil-
liard, which consists of two hard disks “1” and “2” of radius
a with the center-to-center separation R, see Fig. 2. Follow-
ing the discussion above we place the initial wave packet on
the line connecting the disk centers with its wave vector k0
pointing along this line in order for the sum in Eq. �26� to
have significant, nonvanishing terms. For the initial condi-
tion shown in Fig. 2 these nonvanishing terms are

��0�G0T1G0T2G0 ¯ T1G0T2G0��0�

= −
m

�2� i

2�	
�1/2

��0�	,k0;0��2

�
ei	r1

�r1

f	���
ei	R

�R
f	���

ei	R

�R
¯ f	���

ei	R

�R
f	���

ei	r2

�r2

,

�27�

FIG. 2. Two-disk billiard. The circular wave packet is initially
located on the classical periodic orbit distance r1 away from the
center of disk “1” and distance r2 away from the center of disk “2”
with r1+r2=R.
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where the diffraction regime approximation �22� has been
used. Here, r1 and r2 are the distances separating the center
of the wave packet and the centers of disks 1 and 2, respec-
tively; r1+r2=R. Substituting Eq. �27� into Eq. �26�, while
neglecting all other scattering sequences, one obtains a geo-
metric series that sums to

S�E� =
m

�2� iR

2�	r1r2
�1/2 ��0�	,k0;0��2

1 − � f	���
ei	R

�R
�−2 . �28�

Equation �24� along with the assumption r1�r2�R /2 shows
that the validity of the result predicted by Eq. �28� is limited
to the energies satisfying 	�R /2a2 ,R / �a+��2. Now, if the
wave packet is sufficiently localized in the momentum space,
i.e., the de Broglie wavelength

�–  1/k0 � � , �29�

and if k0�R /2a2 ,R / �a+��2, then Eq. �28� can be used to
calculate the time domain autocorrelation function for the
wave packet.

Finally we make an assumption that the quantum particle
is highly energetic, so that its de Broglie wave-length is
much smaller than the scatterer size, i.e., ��a. This approxi-
mation allows us to use the semiclassical �WKB� expression
for the hard-disk scattering amplitude, namely,

f	�
� = −�a

2
�sin�
/2��e−2i	a�sin�
/2��. �30�

Equation �30� is known to be a good approximation of the
exact scattering amplitude for sufficiently large scattering
angles �28�. Then, combining the diffraction approximation

�24� with the short de Broglie wavelength approximation �–

�a, we arrive at the following condition:

2a2

R
,

�a + ��2

R
� � � a . �31�

We refer to this inequality as the condition of the high-
energy diffraction regime. In the rest of this paper we assume
that both the momentum space localization condition �29�
and the high-energy diffraction regime condition �31� are
satisfied.

The calculation of the autocorrelation function in the time
domain C�t� is carried out in accordance with Eqs. �13�, �14�,
�25�, and �28�. The scattering part of the time-domain auto-
correlation amplitude reads

S�t� =
i

2�

�2

m
�

�

d		 exp�− i
�t

2m
	2�S�E� , �32�

where S�E� is given by Eq. �28�, and contour � in the
complex 	 plane follows the imaginary axis from −i� to 0,
then turns at the right angle, and proceeds to +� along the
real axis.

Careful analytical calculation of a range of times, for
which Eq. �32�, with S�E� given by Eq. �28�, yields accu-
rate predictions, is a formidable problem. Nevertheless, we
can use simple physical arguments to roughly estimate this

time range. The method that we used to calculate the energy-
dependent scattering part of the autocorrelation function
S�E� relies on the assumption of the wave packet diffrac-
tion. The wave packet must explore the scattering system for
the diffraction effects to take place. An estimate of the time
needed for the particle to reach the first scatterer is tE
�r2 /v�R /v, where r2 is the distance between the initial
location of the particle and the first scatterer it collides with,
see Fig. 2, and v=�k0 /m is the average velocity of the wave
packet. Time tE also gives an estimate of the Ehrenfest time
for the system: for times shorter than tE the wave packet
evolution is dominated by the free particle Hamiltonian, and
therefore is classical-like, while particle’s propagation is dif-
fractive and substantially nonclassical for times beyond tE.
To estimate the upper bound of the applicability time range
we note that the WKB expression for the scattering ampli-
tude �30� breaks down at low energies E=�2	2 /2m with
	�1/a. The momentum corresponding to these energies is

�	���– /a��k0, and the corresponding velocity is

v	���– /a�v. The contribution of these low energy modes of
the particle to the autocorrelation function become signifi-
cant after the long wavelength part of the wave packet ex-
plores the scattering system, i.e., after times tmax�R /v	

��a / �–�R /v corresponding to a / �– particle-disk collisions.

Since a� �– this number of collisions can be quite large.
Summarizing, we find that the applicability time range of our
analysis of the time-dependent autocorrelation function is es-
timated by

1 � vt/R � a/�– . �33�

In order to evaluate the integral in Eq. �32� one can show
that for t�0 the contour can be closed along the infinite
quarter circle 	=	�ei�, with 	�→ +�, and the angle � de-
creasing from 0 to −� /2 �29�, so that the value of the inte-
gral is determined by poles of S�E� in the fourth quadrant
of the complex 	 plane:

	n =
�n

R
−

i

2R
ln

2R

a
, for n = 1,2,3, . . . . �34�

The semiclassical approximation for the scattering amplitude
Eq. �30� was used to find zeros of the denominator of S�E�,
so that Eq. �34� correctly locates the poles right below the
region on real 	 axis where �0�	 ,k0 ;0� is localized. Then,
calculating the residues corresponding to the poles, we get

S�t� �
1

2
�2�iRr1r2�−1/2

� 	
n�n0−�R/��

n0+�R/��

�	n��0�	n,k0;0��2 exp�− i
�t

2m
	n

2� ,

�35�

where �n0 /R=k0, and the square brackets in the summation
limits represent the integer part. Equation �35� is expected to
hold within the time range given by Eq. �33�.
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The free streaming part of the autocorrelation function
overlap 0�t�= ��0 �G0�t� ��0� is calculated explicitly for the
free particle propagator. It can be shown that its contribution
to the full autocorrelation function C�t� is negligible for di-
lute billiard systems �30�. Therefore, the autocorrelation
function for long times is entirely determined by the scatter-
ing events, so that C�t���S�t��2.

The main features of the time-domain autocorrelation
function C�t� can be deduced by considering only a small
number of poles with n=n0+ ñ, where ñ is sufficiently small,
so that the pre-exponential function in Eq. �35� stays ap-
proximately constant. The contribution due to these poles is

S�t� � 	
ñ

exp�− i
�t

2m
�k0 +

�ñ

R
−

i

2R
ln

2R

a
�2�

� e−iE0t/� exp�−
1

2
��2�t�	

ñ

e−i�vt/R��ñ, �36�

where E0=�2k0
2 /2m is the average energy of the wave

packet, v=�k0 /m is its average velocity, and

��2� =
v
R

ln
2R

a
�37�

is the classical Lyapunov exponent of the two-disk periodic
orbit in the limit R�a, e.g., see Ref. �31�. Equation �36�
shows that �i� the envelope of the scattering part of the au-
tocorrelation function decays exponentially with time C�t�
�e−��2�t with the decay rate given by the classical Lyapunov
exponent of the system and �ii� strong interference peaks
occur in C�t� at times t multiple to the period of the classical
periodic orbit, i.e., when vt /R is an even integer. The peaks
of the autocorrelation function correspond to partial recon-
struction of the wave packet at times at which the counter-
part classical particle returns to its initial point in the phase
space.

Figure 3 shows the autocorrelation function C�t� com-
puted using Eq. �35�, with the wave packet given by Eq.
�17�, for the two-disk billiard with the parameters a=1 and
R=104. The circular wave packet of size �=1 is initially
placed in the middle between the disks r1=r2=R /2 and its de
Broglie wavelength �=10−2. Conditions �29� and �31� are
satisfied by this system. The summation in Eq. �35� includes
20 001 poles. The solid line shows e−��2�t decay. The figure
shows the decay for times t greater than the Ehrenfest time
tE�R /2v.

As mentioned above, Fig. 3 exhibits the wave packet re-
construction �revival� peaks together with the exponential
decay of the autocorrelation function envelope. Another dis-
tinct feature of the decay is the broadening of the peaks in
the course of time. These phenomena have a simple physical
explanation. The direction along the two-disk periodic orbit
is neutrally stable, i.e., a perturbation of the initial phase-
space point �of a classical particle on the periodic orbit�
along this direction grows most linearly with time. On the

other hand, the direction perpendicular to the periodic orbit
is exponentially unstable, with the Lyapunov exponent ��2�

playing the role of the classical instability rate. Therefore,
the wave packet probability density dies out linearly with
time in the direction along the periodic orbit, whereas it de-
creases exponentially in the perpendicular direction �32�. The
spreading of the wave packet in the direction along the peri-
odic orbit �and therefore along its average velocity� yields
prolongation of time intervals during which ��t� significantly
overlaps with the initial state ��0�. This prolongation
amounts to broadening of the revival peaks of the autocorre-
lation function. On the other hand, the wave packet spread-
ing in the unstable direction is responsible for the exponen-
tial decay of the autocorrelation function envelope.

E. Three-disk systems

We will now calculate the autocorrelation function decay
for different scattering systems, namely, three-disk billiards,
in which a particle moves in two-dimensional space with
three fixed hard-disk scatterers. Here we restrict ourselves
only to such three-disk billiards for which the centers of the
disks constitute vertices of an equilateral or of an isosceles
triangle. The corresponding scattering systems are then re-
ferred to as the three-disk equilateral and isosceles billiards,
respectively. The discussion of the generic three-disk bil-
liard, in which all three sides of the triangle are different, is
left for Sec. III.

1. Three-disk equilateral billiard

We consider a geometrically open billiard consisting of
three hard disks of radius a centered at the vertices of an
isosceles triangle with one side of length R and two other
sides of length �R, see Fig. 4. Here we focus on the case
�=1, which allows complete analytical treatment. The fol-

FIG. 3. Wave packet autocorrelation function C�t� vs vt /R for
the two-disk billiard. Parameters of the system are as follows:
a=�=1, R=104, r1=r2=R /2, and �– =10−2. The straight line shows
exponential decay with the rate given by the classical two-disk
Lyapunov exponent ��2�. The decay is shown for times t greater
than the Ehrenfest time tE�R /2v.
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lowing section is devoted to the case ��1, for which a
substantial understanding can be achieved in the limit ��1.

As in the case of the two-disk billiard we initially put the
wave packet of size � on the line connecting the center of
two disks, labeled by 1 and 2, with center-to-center separa-
tion R, see Fig. 4. Distances r1 and r2 separating the wave
packet center and the centers of disks 1 and 2, respectively,
satisfy the apparent condition r1+r2=R. The average wave
vector of the wave packet k0 is pointing along the line con-
necting the centers of disks 1 and 2 as shown in Fig. 4.

Our calculation of the wave packet autocorrelation func-
tion employs the transition matrix method applied by Gas-
pard and Rice �6� for calculation of scattering resonances in
three-disk scattering systems. Transition matrices, and re-
lated to them monodromy matrices, have also been used in
analysis of different systems by Bogomolny �33�, and Agam
and Fishman �34�. We first spell out the multiple collision
expansion given by Eq. �26� for the case of a three-disk
billiard

S�E� = 	
n=2

�

	
path�n�

��0�G0T1G0TiG0Tj ¯ G0T2G0��0� ,

�38�

where the second sum runs over all possible paths consisting
of n binary collision events with the first collision taking
place at disk 2 and the nth collision at disk 1. Every term in
this double sum is evaluated using the diffraction regime
approximation �22�. Following Ref. �6� we construct a 6
�6 matrix Q describing a transition in six-dimensional
space composed of directions �1→2� , �1→3� , �2→1� ,
�2→3� , �3→1�, and �3→2�, due to a single scattering event

�39�

where

X = f	���
ei	R

�R
and W = f	�2�/3�

ei	R

�R
. �40�

Here � and 2� /3 are the turning angles for a classical par-
ticle bouncing among three disks of radius a placed in the
vertices of an equilateral triangle with side R�a. The second
sum in Eq. �38� is then given by the one-one element of the
matrix Qn:

	
path�n�

��0�G0T1G0TiG0Tj ¯ G0T2G0��0�

= −
m

�2� iR

2�	r1r2
�1/2

��0�	,k0;0��2�Qn�1,1. �41�

Substituting Eq. �41� into Eq. �38�, and taking advantage of
the equality 	n=2

� Qn=Q2�1−Q�−1, we obtain

S�E� =
m

�2� iR

2�	r1r2
�1/2

��0�	,k0;0��2�1 −
1/6

1 − W + X

−
1/6

1 − W − X
−

�2 + W�/3
1 + W + W2 − X2� . �42�

As in the two-disk billiard case the poles of S�E� located
in the fourth quadrant of the complex 	 plane determine the
time-domain autocorrelation function. Following Ref. �6� we
define �−�a /R ei	R to find that in the limit R�a the poles
of S�E� are given by

	n,j =
2�n + � + arg � j

R
−

i

2R
ln

R�� j�2

a
, �43�

where j=1,2 ,3 ,4 and

�1 =
1

�1/2�1/2 + �31/2/4�1/2 ,

�2 =
�43/2 − 33/2�1/2 − 31/4

2�1 − �3/4�1/2�
ei�,

�3 =
�43/2 − 33/2�1/2 + 31/4

2�1 − �3/4�1/2�
,

�4 =
1

�1/2�1/2 − �31/2/4�1/2ei�. �44�

Equations �43� and �44�, which locate the scattering reso-
nances of the three-disk system, were originally obtained by

FIG. 4. Three-disk isosceles billiard. The circular wave packet is
initially located distance r1 away from disk 1 and distance r2 away
from disk 2 with r1+r2=R. Disk 3 is distance �R away from disks
1 and 2. The “equilateral” billiard case corresponds to �=1.
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Gaspard and Rice �6�. It is interesting to note that 	n2 and
	n3, being the simple poles of the autocorrelation amplitude
S�E�, appear as double poles in the three-disk scattering
matrix �6�. The three-disk scattering resonances have been
also calculated by Cvitanović and Eckhardt �11� by means of
the fundamental cycle expansion technique �35�.

The time-domain scattering part of the autocorrelation
function S�t� is determined following the procedure used
for the analysis of the two-disk billiard system. As before we
only consider the poles lying under the region on the real
	-axis on which the wave packet is mainly concentrated, i.e.,
n� �n0− �R /2�� ,n0+ �R /2���, with 2�n0 /R=k0 and the
square brackets denoting the integer part. Calculation of resi-
dues of S�E� is straightforward. The result is given by

S�t� �
1

6
�2�iRr1r2�−1/2

� 	
n�n0−�R/2��

n0+�R/��

��	n1��0�	n1,k0;0��2e−i��t/2m�	n1
2

+ 2�	n2��0�	n2,k0;0��2e−i��t/2m�	n2
2

+ 2�	n3��0�	n3,k0;0��2e−i��t/2m�	n3
2

+ �	n4��0�	n4,k0;0��2e−i��t/2m�	n4
2

� . �45�

In order to predict the main features of the decay one can
consider only poles in a small vicinity of the peak of the
wave function n=n0+ ñ with ñ�n0. This yields

S�t� � ��e−�̃1t/2 + 2e−�̃3t/2�e−i�vt/R�� + 2e−�̃2t/2 + e−�̃4t/2�

�e−iE0t/�	
ñ

e−i�vt/R�2�ñ, �46�

where, as before, E0 is the average energy of the wave
packet, v is its average velocity, and �̃ j = �v /R�ln�R �� j�2 /a�
with j=1,2 ,3 ,4. The slowest decay rate �̃1, playing the role
of the decay rate of the autocorrelation function envelope,
can be written as

��3�  �̃1 =
v
R

ln
4R

�21/2 + 31/4�2a
�

v
R

ln
0.54R

a
. �47�

Once again neglecting the free-streaming amplitude 0�t�
we calculate the autocorrelation function as C�t���S�t��2.
As in the two-disk billiard case C�t� exhibits a sequence of
strong wave packet revival peaks corresponding to phase
space returns of the counterpart classical particle, see Fig. 5.
Taking into account that ��1 � �0.73, ��2 � �1.34, ��3 �
�11.16, and ��4 � �20.38 one can notice that the peaks occur
whenever vt /R is an integer greater than one, see Fig. 5. At
t=R /v a part of the wave packet reflected by disk 2 overlaps
with the initial wave packet, but this overlap leads to destruc-
tive interference since the wave vectors of the two waves
have opposite directions. This shows up as the absence of the
revival peak at vt /R=1, and appears mathematically as par-
tial cancellation of the expression within the square brackets
in Eq. �46�. It is evident from Eq. �46� together with the
inequality ��1 � , ��2 � � ��3 � , ��4� that, as pointed out by Gas-
pard and Rice �6�, the lines of poles corresponding to �3 and

�4 are screened by the other two lines of poles and have no
affect on the wave packet dynamics. One can also show that
after only two collisions the right-hand side �RHS� of Eq.
�46� becomes totally dominated by the first exponential term
within the square brackets resulting in the exponential decay
of the autocorrelation function C�t��e−��3�t.

Figure 5 shows the decay of the time-dependent autocor-
relation function for the three-disk equilateral billiard studied
above. The parameters of the system are chosen to be iden-
tical with once used in the case of the two-disk billiard a

=�=1, R=104, r1=r2=R /2, and �– =10−2. The function C�t�
for a time interval comprising 10 collision events was calcu-
lated by computing the sum in Eq. �45� over the total of
40 006 poles. The straight line shows e−��3�t decay, with ��3�

given by Eq. �47�. It is interesting to note how small the
magnitude of the autocorrelation function becomes after only
a few particle-disk collisions. After the time corresponding to
ten bounces of the classical particle, the return probability
drops down to a value below 10−40 implying practical or-
thogonality of the initial and final states of the quantum par-
ticle. It is the consequence of the huge scale difference in the
billiard considered here. The phenomenon of the wave
packet partial reconstruction can be enhanced by decreasing
the ratio R /a.

2. Three-disk isosceles billiard

We now address a more general three-disk scattering sys-
tem, in which the scatterers are located at the vertices of an
isosceles triangle, as shown in Fig. 4 with ��1. Once again
the circular wave packet is initially placed between disks 1
and 2, which have center-to-center separation R, while disk 3
is distance �R away from them, see Fig. 4.

The single collision transition matrix Q, which in the case
of an equilateral billiard was given by Eq. �39�, now reads

FIG. 5. The autocorrelation function vs vt /R for the three-disk
equilateral billiard. Parameters of the system are as follows: a=�
=1, R=104, r1=r2=R /2, and �=10−2. The straight line shows ex-
ponential decay with the rate given by ��3�. The decay is shown for
times t greater than the Ehrenfest time tE�R /2v.
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�48�

with

X1 = f	���
ei	R

�R
, X2 = f	���

ei	�R

��R
,

W1 = f	�� − �1�
ei	R

�R
, W2 = f	�� − �1�

ei	�R

��R
,

W3 = f	�� − �3�
ei	�R

��R
. �49�

Here, �1 and �3 are angles of the triangle corresponding to
vertices 1 and 3, respectively; the angles are functions of �,
and satisfy the obvious relation 2�1+�3=�.

Following the technique used above, we calculate the
one-one element of the matrix Q�1−Q�−1 to obtain the en-
ergy dependent autocorrelation function

S�E� = −
m

�2� iR

2�	r1r2
�1/2

��0�	,k0;0��2
�2

�2

X1
2�1 − X2

2�2 + �2X1X2 + W3 − X2
2�2X1X2 − W1W2��W1W2 − �X1X2 − W1W2�2W3

2

�1 − X2
2 + �X1X2 − W1W2�W3�2 − �X1�1 − X2

2� + X2�W1W2 + W3��2 .

�50�

As above, we introduce �−�a /Rei	R. The poles of S�E�,
i.e., zeros of the denominator in Eq. �50�, are given by solu-
tions of the following two polynomial equations:

�2 − ��2 −�1 +
1

2�
����2� = �+�−

a

R
��−1

�2 − �2�� ,

�2 + ��2 −�1 +
1

2�
����2� = �−�−

a

R
��−1

�2 + �2�� ,

�51�

where

�± =
2�

1 ± �1 −
1

4�2�1/4 . �52�

In the limit of �→ +� we have �+→� and �−→25�3.
For the sake of clarity of the following analysis we as-

sume 2� to be an integer. Thus, for R�a and large � one
can find approximate solutions to Eqs. �51�:

�p1 � �1 −
1

4�
�1 +

1

2�
�p1

�0���p1
�0�,

with �p1
�0� = �+

1/2���a

R
�1−1/�

ei��1+p/��,

�p2 � �1 +
1

4�
�1 +

1

2�
�p2

�0���p2
�0�,

with �p2
�0� = �−

1/2���a

R
�1−1/�

ei��1+p/��,

�3
�±� � ± 2��2 −�1 +

1

2�
�−1

, �53�

where p=1,2 , . . . ,2�. Each of these 4�+2 values of � de-
fines a line of poles of S�E� in the complex 	-plane in
accordance with

	n,p,j =
2�n + � + arg �p,j

R
−

i

2R
ln

R��p,j�2

a
,

with j = 1,2;

	n,3
�±� =

2�n + � + arg �3
�±�

R
−

i

2R
ln

R��3
�±��2

a
. �54�

The poles given by Eqs. �54� come in three bands. The
first and the second bands of poles, corresponding to �p,1 and
�p,2 respectively, are essential for the wave packet dynamics,
while the third band, given by �3

�±�, is completely screened by
the first two due to the relation ��1 � � ��2 � � ��3�. Figure 6
shows the first two bands of poles for the three-disk isosceles
billiard with �=5/2 and R /a=104. Figure 6�a� displays the
bands over some interval of real 	 axis, while Figs. 6�b� and
6�c� magnify the first and the second bands, respectively. The
dots in the last two figures represent poles numerically com-
puted directly from Eqs. �51�, and thus should be thought as
of “exact” poles, while crosses are the poles approximated by
Eq. �53�. In most of the cases the dots and the crosses fall on
top of each other, so that one can conclude that Eqs. �53�
accurately locate poles of the autocorrelation function.

As we saw earlier, the size of the gap separating the poles
and the real 	 axis determines time decay of the envelope of
the autocorrelation function. Thus, the autocorrelation func-
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tion envelope decay C�t��exp�−��
�3�t� for the isosceles

three-disk billiard is governed by the rate

��
�3� �

v
R

ln�R

a
��p1

�0��2� =
v

�R
ln

2�R

�1 + �1 −
1

4�2�1/4�a

.

�55�

In the limit ��1 the decay rate becomes ��
�3�

��v /�R�ln��R /a�.
The time-domain autocorrelation function C�t���S�t��2

is now calculated using Eq. �32�, with S�E� given by Eq
�50�. As before, the complex 	-plane contour integration is
performed by calculating the residues of S�E� and comput-
ing the sum over the poles given by Eq. �54� with the index
n� �n0− �R /2�� ,n0+ �R /2���. Here 2�n0 /R=k0 and the
square brackets denotes the integer part. The autocorrelation
function C�t� for the three-disk isosceles billiard is shown in
Fig. 7 for the case of �=5/2. The system is characterized by

R /a=104; the wave packet of the de Broglie wavelength �–

=10−2a is initially placed in the middle between disks 1 and
2, see Fig. 4 with r1=r2=R /2. Figure 7 confirms our earlier
predictions that the overall envelope of the autocorrelation

function decays as e−��
�3�

t with the decay exponent ��
�3� given

by Eq. �55�. The trend of this exponential decay is presented
by the solid lines in the figure. The dotted trend line corre-
sponds to e−��2�t decay, with the rate ��2�, Eq. �37�, being the
two-disk Lyapunov exponent of the unstable periodic orbit
trapped between disks 1 and 2.

At first glance the autocorrelation function C�t� appears
merely as some complicated sequence of decaying peaks.
Nevertheless simple physics underlies its structure. The
peaks of the autocorrelation function, or the wave packet
partial revivals, occur at instants of time at which the coun-
terpart classical particle returns to its initial point in phase

space. Then, relatively larger peaks result from the phase
space trajectories with the smaller number of collisions per
unit time interval. It is because at every collision event a
dominant part of particle’s probability density completely es-
capes the billiard, and only a tiny part of this density pro-
ceeds to the next collision in order to eventually contribute to
the autocorrelation function. In other words, phase space pe-
riodic orbits with longer mean free paths result in stronger
reconstruction peaks. In the isosceles three-disk billiard with
��1 the long free flight path trajectories are the ones that
pass through disk 3 every second collision, see Fig. 4, and
return to the initial point at times tn= �2�n+1�R /v with n
=1,2 , . . . . Thus, C�t� exhibits relatively strong peaks at
times tn corresponding to the scattering sequences 132,
13232, 13132, etc. During time intervals between the large
peaks, i.e., tn−1� t� tn, smaller wave packet reconstruction
peaks occur due to periodic orbits with shorter mean free
paths, which are determined by trajectories bouncing mostly
between disks 1 and 2. This is how the two-disk Lyapunov
exponent ��2� enters the description of C�t� for the three-disk
billiard. Thus, for times t� t1 only the two-disk collision
sequences 12, 1212, etc., contribute to the autocorrelation
function, resulting in the e−��2�t decay.

Another distinctive feature of Fig. 7 is the absence of
revival peaks for times R /v, 3R /v, and 5R /v. That is be-
cause for a classical particle moving with velocity v
=�k0 /m there are no phase space periodic orbits correspond-
ing to these times. We have already encountered same phe-
nomenon while discussing the autocorrelation function decay
in the three-disk equilateral billiard.

Now it is also apparent how the two-disk decay e−��2�t is
recovered if disk 3 is removed to infinity, see Fig. 4. In the
limit �→� the time t1 of the first large reconstruction peak
goes to infinity, resulting in the two-disk billiard decay of the
autocorrelation function for t� t1→�.

FIG. 6. �a� First two “bands” of poles for the case of �=5/2 and
R /a=104. �b� Magnification of the first band, �c� magnification of
the second band. Dots correspond to �exact� values of the poles
numerically computed directly from Eq. �51�, while crosses show
the same poles approximated by Eq. �53�.

FIG. 7. The autocorrelation function as a function of time for
the isosceles three-disk billiard with �=5/2. Disks 1 and 2 are
separated by distance R=104a. The wave packet of the de Broglie
wavelength �=10−2a is initially located as shown in Fig. 4 with
r1=r2=R /2. The dotted and the solid straight lines represent e−��2�t

and e−��
�3�

t decays, respectively.
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Before closing this section we give a brief summary of the
results obtained. We have used the multiple collision expan-
sion technique to provide a detailed first-principle calculation
of the time-dependent autocorrelation function C�t� for quan-
tum wave packets moving in billiards composed of two and
three hard-disk scatterers. By analytically constructing C�t�
for three-disk isosceles billiards we have broadened the class
of three-disk systems earlier treated by similar methods �6�.
The applicability limits of these methods were shown to be
given by the condition of the high-energy diffraction regime
�31�. We found the decay of the autocorrelation function for
the case of a three-disk equilateral billiard to be mainly ex-
ponential apart from a regular sequence of wave packet re-
construction peaks of equal relative strength. On the other
hand, C�t� decays nonuniformly in the case of a three-disk
isosceles system, and features different decay rates at differ-
ent time scales. Thus, at times shorter that �2�+1�R /v, see
Fig. 4, the decay is entirely determined by the Lyapunov
exponent of the shortest two-disk classical periodic orbit,
while at long times, the overall envelope decays at a slower
rate given by Eq. �55�. A well pronounced structure of re-
vival peaks is again observed in the autocorrelation function
of the three-disk isosceles billiard. As we will show in Sec.
III the relative strengths of the peaks are determined by the
number of interfering periodic orbits of the counterpart clas-
sical system.

III. SEMICLASSICAL DESCRIPTION

In this section we present a simple method for predicting
relative strength of the peaks of the wave packet autocorre-
lation function C�t�, see Eq. �1�, based on the semiclassical
Van Vleck propagator �36�. The semiclassical analysis of the
autocorrelation function was earlier performed by Tomsovic
and Heller for the case of the stadium billiard �37�. We start
with applying the semiclassical method for two- and three-
disk billiards studied in the previous section, and then, use it
to investigate such more complicated scattering systems as
the three-disk generic billiard and the two-, three-, and four-
sphere billiards in three spatial dimensions.

Semiclassical approach. In the limit of short de Boglie
wavelengths the time evolution of a quantum state in a hard-
disk or hard-sphere billiard can be described by the semiclas-
sical Van Vleck propagator �36�

Gsc�r,r�;t�  �r�Gsc�t��r��

= � 1

2�i�
�d/2

	
�̃

D�̃
1/2 exp�i

S�̃�r,r�;t�

�
− i

���̃

2
� .

�56�

The summation in this expression goes over all classical
paths �̃ connecting points r� and r �in d-dimensional space�
in time t. S�̃�r ,r� ; t� represents the classical action along the
path �̃, and ��̃ is an index equal to twice the number of
collisions of the particle with hard scatterers during time t
�6�. The Van Vleck determinant D�̃= �det�−�2S�̃ /�r�r��� cor-
responds, up to an appropriate normalization factor, to the
classical probability of the path �̃ �38�.

The autocorrelation overlap due to the propagator given
by Eq. �56� and the initial quantum state ��0� can be written
as

��0�Gsc�t���0� =� dr� dr��0
*�r�Gsc�r,r�;t��0�r�� ,

�57�

where an asterisk denotes complex conjugate. Let us now
assume that the wave function �0�r� is localized about point
R0 and has an average momentum �k0,

�0�r� = ��0�r��eik0·r. �58�

Since both wave functions in the integrand on the right-hand
side of Eq. �57� are localized about R0, we expand the action
S�̃�r ,r� ; t� about the points r=R0 and r�=R0 �39�, as

S�̃�r,r�;t� � S��R0,R0;t� + �k��r − R0� − �k���r� − R0� ,

�59�

where a classical particle traveling along the closed path
� would leave the point R0 with momentum
�k��=−�S��R0 ,r� ; t� /�r��r�=R0

and return to R0 after time t
having momentum �k�=�S��r ,R0 ; t� /�r�r=R0

. Substitution
of Eq. �56� along with Eqs. �58� and �59� into Eq. �57� yields

��0�Gsc�t���0� � � 1

2�i�
�d/2

	
�

D�
1/2

� exp�i
S��R0,R0;t�

�
− i

���

2
�

���̄0�k���*�̄0�k��� , �60�

where

�̄0�k� = eik·R0� dr��0�r��ei�k0−k�r. �61�

In deriving Eq. �60� we used D�̃�D� and ��̃=�� assuming
that the paths �̃ and � are close and follow the same collision
sequence.

Let us now assume the function ��0�r�� to be sufficiently

smooth in order for �̄0�k�, defined by Eq. �61�, to be sharply
peaked about k0. Then, the main contribution to the autocor-
relation amplitude in Eq. �60� comes from paths � with k�

�k���k0. Thus, in order to obtain a leading contribution to
��0 �Gsc�t� ��0� at a fixed time t, one can restrict the summa-
tion in Eq. �60� only to classical periodic orbits �̄ passing
through a small neighborhood of the phase space point
�R0 ,k0�, and therefore having the momentum p��k0. The
classical actions along such periodic orbits can be written as
S�̄���2k0

2 /2m�t, and are the same for all �̄’s. The autocorre-
lation amplitude then reads

��0�Gsc�t���0� � ei��t/2m�k0
2� 1

2�i�
�d/2�� dr��0�r���2

�	
�̄

D�̄
1/2e−i����̄/2�. �62�

Equation �62� is suitable only for predicting the values of the
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autocorrelation function C�t������0 �Gsc�t� ��0��2 at times t
= t�̄ such that there exists at least one classical periodic tra-
jectory �̄ of period t�̄ passing through the spatial point R0
with momentum �k0. Due to the narrow momentum distribu-
tion of the initial wave packet, given by the function �̄0�k� in
Eq. �60�, C�t� decreases by orders of magnitude as the time t
changes to a value such that all the classical periodic orbits
of period t have momenta different from �k0. Therefore, we
come to a conclusion that the time decay of the autocorrela-
tion function consists of sequence of sharp peaks centered at
the times t�̄. Equation �62� is then only suitable for predict-
ing the relative strength and time location of these peaks.

It will be shown below that the probability measure of
periodic orbits �or D�̄� decreases exponentially with the in-
crease of the number of collisions a classical particle under-
goes while traveling along these orbits. Therefore, the value
of the autocorrelation function at a given peak at time t is
predominantly determined by a subset ���� of the set of all
classical periodic trajectories ��̄� of length vt= ��k0 /m�t,
such that the members of the subset have the smallest num-
ber of scattering events N�t� possible for time t. Indexes
���=2N�t� are the same for all members of the subset ����,
yielding

C�t� � �	
��

�D���2
. �63�

Equation �63� allows one to predict the relative magnitude of
peaks of the autocorrelation function C�t� by searching �ana-
lytically or numerically� for the periodic orbits with the
smallest number of scattering events during a given time t.
We will employ this formula in the sequel to calculate the
autocorrelation function decay for wave packets in various
hard-disk and hard-sphere billiards.

If properly modified, the above technique is also appli-
cable for calculation of the peaks of the classical autocorre-
lation function Ccl�t�, i.e., a fraction of classical trajectories
in a small phase space region around the initial location of a
classical particle, which return to this region after time t. The
classical autocorrelation function gives the phase space re-
turn probability for a classical particle described by a phase
space distribution function rather than by the exact coordi-
nates. It characterizes the escape of classical trajectories
from a small neighborhood of a chaotic repeller of the sys-
tem. In mixing chaotic systems, such as hard-disk and hard-
sphere billiards, the autocorrelation function decays expo-
nentially with time Ccl�t��e−�clt, with the decay rate �cl

known as the escape rate on the repeller �6,40�. The changes
one needs to introduce in Eq. �63� are apparent. Due to the
absence of interference in classical mechanics one has to
directly sum the probabilities of the periodic orbits D�� rather
than the probability amplitudes �D��. This leads to

Ccl�t� � 	
��

D��. �64�

Finally, one needs to specify quantities D�� entering the
RHS of Eqs. �63� and �64�. This can be done taking into
account that the Van Vleck determinant D�� equals, up to a
normalization factor, the classical probability measure of the

trajectory ��, e.g., see Ref. �38�. Thus, in d-dimensional
space the probability density to find a particle at a distance R
from the source radiating particles with some initial velocity
distribution is proportional to 1/Rd−1. Furthermore, the prob-
ability for a particle to undergo a collision with a scatterer in
a given direction is described by the differential cross section
�diff�
�, with 
 being the scattering angle. Therefore, the
probability for the particle to follow a periodic collision se-
quence ���= �i , j , . . . ,q ,r ,s�, constituting an orbit ��, is

D�� �
�diff�� − �i�

Rij
d−1 ¯

�diff�� − �q�
Rqr

d−1

�
�diff�� − �r�

Rrs
d−1

�diff�� − �s�
Rsi

d−1 , �65�

where Rij is the center-to-center separation between scatter-
ers i and j, and �i is the angle of the periodic orbit polygon
�with the vertices at the scatterer centers� corresponding to
the ith vertex. The separation distances satisfy an obvious
relation

Rij + ¯ + Rqr + Rrs + Rsi = vt , �66�

which implicitly provides the time dependents to the RHS of
Eqs. �63� and �64�.

As we will see below, the expression for the quantum
�classical� autocorrelation function proposed in this section,
despite its simplicity, accurately predicts times and relative
magnitudes of the wave packet �distribution function� recon-
struction peaks. Nevertheless, application of more sophisti-
cated techniques, similar to the one presented in the previous
section, is required if one needs to obtain absolute �and not
relative� values of the autocorrelation function for a wide
range of times, including time intervals between the neigh-
boring peaks. One needs to have detailed knowledge of the
particle’s wave function in order to predict C�t� for times t
other than the peak times, i.e. for times that have no phase
space period orbits of velocity v corresponding to them. This
requires the construction of the full quantum propagator for a
given system by methods analogous to the one presented in
Sec. II.

A. Application to studied cases

We first start with applying the semiclassical technique to
calculate the peaks of the autocorrelation function for the
hard-disk scattering systems analyzed in Sec. II by the
method of multiple collision expansions, i.e., for the two-
disk billiard, and three-disk equilateral, and isosceles bil-
liards. After that we will treat such more complicated system
as the three-disk generic billiard, as well as some hard-sphere
billiards in three dimensions.

1. Two-disk billiard

In the case of the two-disk scattering system, see Fig 2,
there is only one scattering sequence 1212 . . . contributing to
a peak of the autocorrelation function C�tn� at time tn

=2nR /v, with n=1,2 , . . . . The probability weight Dn, corre-
sponding to a periodic orbit of length vtn, is calculated ac-
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cording to Eq. �65� with d=2 and the semiclassical hard-disk
differential cross section

�diff�
� =
a

2
�sin




2
� , �67�

where 
=� for the back scattering. Then,

C�tn� � Dn � � a

2R
�2n

= exp�− ��2�tn� , �68�

where ��2� is the two-disk Lyapunov exponent given by Eq.
�37�.

Since the right-hand sides of Eqs. �63� and �64� reduce to
the return probability Dn of a single collision sequence, we
see that the classical autocorrelation function decays exactly
in the same manner as the quantum one:

Ccl�tn� � exp�− ��2�tn� . �69�

As we will see later, this similarity is the consequence of the
fact that the Kolmogorov-Sinai entropy for the two-disk pe-
riodic orbit is zero �22�, i.e., there is no information produc-
tion in the system since for any time tn=2nR /v there exists
only one trajectory leading to the wave packet �distribution
function� partial reconstruction. Thus, the phenomenon of
interference between different trajectories is absent in the
quantum case, resulting in the same escape rates for classical
and semiclassical particles.

2. Three-disk equilateral billiard

Let us now address the three-disk scattering system, with
the scatterers centered in the vertices of an equilateral tri-
angle. Figure 8 shows the autocorrelation peaks as a function
of time, which were computed numerically according to Eqs.
�63�, �65�, and �67� by summing over all collision sequences

satisfying Eq. �66�. The dashed trend line in the figure rep-
resents the exponential decay with the rate ��3� given by Eq.
�47�. The billiard is characterized by the disk radius a=1,
and the disk center-to-center separation R=104. The system
is identical to the billiard considered in Sec. II, see Fig. 2,
and the decay of the autocorrelation peaks is to be compared
with the one presented in Fig 3. Note, that the de Broglie
wavelength rate � does not enter the sum in Eq. �63�, being
contained in a possible prefactor, and is therefore not impor-
tant for determining the relative strength of the peaks. Figure
8 clearly shows that, as in the two-disk case, the semiclassi-
cal theory recovers the autocorrelation function decay rate
obtained in Sec. II by means of the multiple collision expan-
sion technique.

The decay rate ��3� given by Eq. �47� for the equilateral
three-disk billiard can be exactly recovered using the semi-
classical method. In order to calculate ��3� one needs to sum
probability amplitudes �D�� over all collision sequences ���
satisfying Eq. �66�. Once again, this can be accomplished
with the help of the matrix method �6� discussed in the pre-
vious section. We construct a one-collision transition matrix
q according to

�70�

with

x  � a

2R
�1/2

and w  ��3a

4R
�1/2

. �71�

Here, x and w are the values of the amplitude
��diff��−�� /R, with �diff given by Eq. �67� and � taking
values of 0 and � /3, respectively. The matrix q describes a
transition due to a single collision event in the six-
dimensional space spanned by directions �1→2�, �1→3�,
�2→1�, �2→3�, �3→1�, and �3→2�. This matrix allows
one to express the sum of overlap amplitudes in Eq. �73� for
times tn=nR /v, with number of collisions n=2,3 , . . ., ac-
cording to

	
��

D��
1/2�tn� = �qn�1,1, �72�

where the subscript in the RHS denotes that the one-one
element of the matrix is taken. The autocorrelation function
at the nth collision is related to the one at the �n+1�th colli-
sion by

FIG. 8. Peaks of the autocorrelation function for the equilateral
three-disk billiard calculated in accordance with Eqs. �63�, �65�, and
�67�. The dashed line shows e−��3�t decay, with ��3� given by Eq.
�47�. The radii of the disks constituting the billiard equal a=1, and
the disk center-to-center separation is R=104. This figure is to be
compared with Fig. 5.
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C�tn + R/v�
C�tn�

= � �qn+1�1,1

�qn�1,1
�2

. �73�

For large number of collisions, n�1, the largest eigenvalue
of the matrix q, equal to x+w, dominates both the numerator
and the denominator of Eq. �73�, so that

lim
tn→+�

C�tn + R/v�
C�tn�

= �x + w�2 =
a

R
��1/2�1/2 + �31/2/4�1/2�2

= exp�− ��3�R

v
� , �74�

where ��3� is the decay rate given by Eq. �47�.
Finally let us mention that the classical escape rate �cl

�3�

can be obtained with the help of the transition matrix q,
given by Eq. �70�, if one redefines x and w by replacing the
square roots in Eq. �71� by the first powers, i.e.,

x →
a

2R
and w →

�3a

4R
. �75�

Then,

Ccl�tn + R/v�
Ccl�tn�

=
�qn+1�1,1

�qn�1,1

t→�
——→ x + w

=
a

R
�1

2
+

�3

4
� = exp�− �cl

�3�R

v
� , �76�

with the classical escape rate given by

�cl
�3� =

v
R

ln
4R

�2 + �3�a
�

v
R

ln
1.07R

a
. �77�

One can see that the absence of interference in the classical
case results in faster particle escape from the scattering sys-
tem. The classical escape rate for the three-disk equilateral
billiard was obtained by Gaspard and Rice �22�.

3. Three-disk isosceles billiard

In order to complete the comparison of predictions of the
semiclassical methods with the results of the detailed binary
collision expansion studies, we consider the case of the
three-disk billiard with the scatterers centered in the vertices
of an isosceles triangle. Figure 9 displays the peaks of the
autocorrelation function in the system shown in Fig. 4 with
�=5/2, a=1, and R=104. The structure of the decay is two-
fold. There are relatively big recurrences of the wave packet
at times tn= �2�n+1�R /v= �5n+1�R /v with n=1,2 ,3 , . . . .

The magnitudes of these recurrences follow e−��
�3�

t decay
�represented by the dashed line�, with the decay rate ��

�3�

given by Eq. �55�. In between any two large neighboring
peaks the autocorrelation function decays rapidly, approxi-
mately following e−��2�t decay �dotted lines�, with the two-
disk Lyapunov exponent ��2� defined by Eq. �37�. The se-
quence of autocorrelation function peaks in Fig. 9 is almost
identical to the one in Fig. 7.

We will now use the matrix method to derive the autocor-
relation function envelope decay rate ��

�3� directly from Eq.

�63�. As it was mentioned above the sum in the RHS of Eq.
�63� goes only over such periodic orbits �� that comprise the
smallest number of scattering events possible for a periodic
trajectory of length vt. This is because the overlap ampli-
tudes �D�� corresponding to trajectories with the longest
mean free path are given by products of the smallest number
of ��diff /R�1 terms, and therefore are the dominant ones. In
the case of the three-disk isosceles billiard with ��1 these
long mean free path trajectories are the ones that pass
through the scatter 3 every second collision, see Fig. 4.
This amounts to the collision sequence 132 at time
t1= �2�+1�R /v, collision sequences 13132 and 13232 at
time t2= �4�+1�R /v, etc. In general there are 2n−1 different
periodic orbits of length vtn= �2n�+1�R contributing to the
autocorrelation function peak C�tn�.

The relative probability weights of the above trajectories
are determined according to Eq. �65� with the differential
cross section given by Eq. �67�. Thus, collisions
�1→3→1� and �2→3→2� are described by the cross sec-
tion �diff3

=a /2, while �1→3→2� and �2→3→1� by
�diff3�

= �a /2�cos��3 /2�= �a /2��1−1/4�2, where �3 denotes
the angle of the triangle corresponding to vertex 3, see Fig.
4. The first and the last collisions of every periodic trajectory
deflects the moving particle by the angle 
=�−�1
=� /2+�3 /2, and is described by the cross section
�diff1

=�diff2
= �a /23/2��1+1/2�. Here �1 and �2�=�1� are the

other two angles of the isosceles triangle satisfying
2�1+�3=�. Thus, the sum of overlap amplitudes at time
tn= �2n�+1�R /v, corresponding to periodic orbits of 2n+1
collisions, can be written as

	
��

D��
1/2�tn� =��diff1

�R
�q2n−1�1,2��diff2

R
, �78�

where

FIG. 9. Peaks of the autocorrelation function as predicted by Eq.
�63� for the isosceles three-disk billiard with �=5/2. The dashed

line shows e−��
�3�

t decay, with ��
�3� given by Eq. �55�, while the

dotted lines show the trend of the e−��2�t decay, with ��2� defined by
Eq. �37�. The billiard is parametrized by a=1 and R=104. This
figure is to be compared with Fig. 7.
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�79�

with

x � a

2�R
and w � a

2�R
�1 −

1

4�2�1/4

. �80�

Repeating the arguments used in the case of the three-disk
equilateral billiard we find that

C�tn+1�
C�tn�

= � �q2n+1�1,2

�q2n−1�1,2
�2

n→�
——→ x2�x + w�2

= � a

2�R
�2�1 + �1 −

1

4�2�1/4�2

, �81�

since �x�x+w� is the largest eigenvalue of the matrix q. The
time interval between any two successive large peaks of the
autocorrelation function is tn+1− tn=2�R /v, so that for
n�1 we get

C�tn+1� � C�tn�exp�− ��
�3��tn+1 − tn�� , �82�

with the decay rate ��
�3� given by Eq. �55�. Once again we

observe strong agreement between the prediction of the
semiclassical analysis and the results of the diffraction re-
gime approximation obtained in Sec. II.

The classical decay rate �cl,�
�3� for the three-disk isosceles

billiard can be obtained by the following modification of the
elements of the transition matrix q:

x →
a

2�R
and w →

a

2�R
�1 −

1

4�2 . �83�

Then,

Ccl�tn+1�
Ccl�tn�

=
�q�

2n+1�1,2

�q�
2n−1�1,2

n→�
——→ x�x + w�

= exp�− �cl,�
�3� �tn+1 − tn�� , �84�

with the classical decay rate

�cl,�
�3� =

v
�R

ln
2�R

�1 +�1 −
1

4�2�1/2

a

. �85�

A comparison of Eqs. �55� and �85� shows that, as in the case
of the three-disk equilateral billiard, classical particle escape
in the isosceles billiard takes place at higher rate than the
corresponding quantum process.

B. More billiards

As we have seen, the semiclassical method presented here
is suitable for predicting the main features of the autocorre-
lation decay in hard-disk scattering systems. We now apply

the method to problems which could not be easily treated by
the technique of explicit calculation of scattering resonances
used in Sec. II.

1. Generic three-disk billiard

The first system we address is a three-disk billiard of the
most general type: the disks of radii a are centered in the
vertices of a triangle of unequal sides R, �R, and �R, where
for concreteness we take ��1,�. In order to visualize the
system one should consider the three-disk isosceles billiard
shown in Fig. 4, and elongate the side 13 of the triangle from
its original length �R to the new length �R. It is a formidable
problem to calculate the scattering resonances �and the cor-
responding residues� governing the time evolution of a wave
packet for such a system. This makes the multiple collision
expansion technique, used to study the three-disk equilateral
and isosceles billiards, inefficient in the case of the generic
three-disk scattering system. On the other hand the semiclas-
sical approach of this section is quite easy to implement. It
allows one to extract such important information about the
autocorrelation function as the relative strength of the revival
peaks and the overall envelope decay rate.

The trajectories with the longest free flight path are the
ones that bounce most of their time between disks 1 and 3
with the largest center-to-center separation �R. In the limit
of a large number of collisions n�1 there is a single periodic
collision sequence 1313¯132 resulting in a relatively strong
wave packet recurrence at times tn= �1+�+ �n−2���R /v. In
accordance with Eqs. �63�, �65�, and �67� we have

C�tn� � � a

2�R
�n−2 a

2R
cos��2

2
� a

2�R
cos��3

2
�

� exp�− ��
�2�tn� , �86�

where �2 and �3 are the triangle angles at vertices 2 and 3,
respectively, and

��
�2� =

v
�R

ln
2�R

a
�87�

is the two-disk Lyapunov exponent, see Eq. �37�, corre-
sponding to disks 1 and 3.

Figure 10 shows peaks of the wave packet autocorrelation
function for the three-disk billiard with �=�2, �=2, a=1,
and R=104. The peaks fall inside a narrow cone. Magnitudes
of the relatively strongest recurrence peaks decay exponen-

tially with time as e−��
�2�

t, with the decay rate ��
�2� predicted

by Eq. �87�. The trend of this exponential decay is shown by
the solid line. The dashed line represents the exponential
decay e−��2�t due to the shortest two-disk periodic orbit in the
system. The value of ��2� is calculated in accordance with
Eq. �37�, and represents the fastest decay rate in the billiard.

As shown in Sec. II, the peaks of the autocorrelation func-
tion have significant width which increases with time, see
Figs. 3, 5, and 7. Therefore, if the autocorrelation function
peaks are closely spaced, as in Fig. 10, the peak broadening
ultimately results in overlapping of neighboring peaks, so

that only the overall envelope decay C�t��e��
�2�

t can be re-
solved. Thus, the simple semiclassical approach of the sec-
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tion allows one to predict main features of the time-
dependent autocorrelation function for wave packets in
arbitrary shaped three-disk billiards.

Finally, let us compare the decays of the wave packet
autocorrelation function in three-disk scattering systems of
three possible types: �i� equilateral ��=�=1�, �ii� isosceles
��=��1�, and �iii� generic �����1� three-disk billiards.
Let also the triangles, constituted by the disk centers, have
approximately equal side lengths, and differ only by the
number of symmetries. Thus, in the cases �ii� and �iii� both �
and � are close �but not identical� to unity.

Table I represents the autocorrelation function decay ex-
ponents for the abovementioned three-disk billiards calcu-
lated in accordance with Eqs. �47�, �55�, and �87�. One can
see that the decay rate increases by approximately �v /R�ln 2
as the number of equal sides in the three-disk billiard de-
creases by 1. This difference in the decay rates is approxi-
mately equal to twice the difference in KS entropies per unit
time of corresponding billiards, and will be discussed in
more details in the sequel.

Presence of symmetries in a scattering system increases
the number of periodic trajectories of a given length, and

thus enhances interference effects. It is due to the interfer-
ence that strong wave packet reconstruction peaks occur re-
sulting in slower envelope decay of the wave packet autocor-
relation function.

2. Hard-sphere billiards in three dimensions

The above semiclassical approach can also be applied to
calculate the autocorrelation function decay for wave packets
in three-dimensional hard-sphere billiards. Here we briefly
derive the autocorrelation function decay rates for the fol-
lowing three systems: �i� the two-sphere, �ii� the three-sphere
equilateral, and �iii� the four-sphere tetrahedral �41� billiards.

The wave packet �phase space distribution� partial recon-
struction peaks of the semiclassical �classical� autocorrela-
tion function are given by Eq. �63� �Eq. �64��, with the col-
lision sequences ��� satisfying Eq. �66�. The probability
weight D�� of the periodic orbits �� are now determined
from Eq. �65� with d=3, and with the differential cross sec-
tion

�diff�
� =
a2

4
, �88�

where a stands for the radius of the hard-sphere scatterer. It
will become clear below that the independence of the differ-
ential cross section �diff on the scattering angle 
 signifi-
cantly simplifies the calculation of the decay rates of C�t�
and Ccl�t�.

Let us start with analyzing the autocorrelation function
peaks for a wave packet moving in a two-sphere billiard
consisting of two hard spheres 1 and 2 of radius a, separated
by a distance R�a, e.g., see Fig. 2. A wave packet is initially
located on the line connecting the sphere centers and moves
toward one of the spheres. As in the two-disk billiard case,
there exists only one periodic collision sequence 1212¼
contributing to the partial wave packet �phase space distribu-
tion� reconstruction at times tn=2nR /v, with n=1,2 , . . . .
Hence,

C�tn� � Ccl�tn� � � a2

4R2�2n

= exp�− �3D
�2�tn� , �89�

where

�3D
�2� = �cl,3D

�2� = 2��2� =
2v
R

ln
2R

a
�90�

is the sum of the two positive Lyapunov exponents ��2�

= �v /R�ln�2R /a� of the two-sphere periodic orbit. As in the
two-disk billiard case, the absence of the interference of dif-
ferent trajectories results in equality of the semiclassical and
classical decay rates.

The equilateral three-sphere billiard in three dimensions
consists of three spheres of radius a placed in the vertices of
an equilateral triangle with side R�a, e.g., see Fig. 4. In this
system, the peaks of the autocorrelation function occur at
times tn=nR /v, with n=2,3 ,4 , . . ., counting the number of
collisions. The probability amplitude of a closed path ��,
given by �D���tn�= �a /2R�n, is only a function of time tn and
does not depend on the details of the particular collision

TABLE I. Autocorrelation function decay exponents for three-
disk billiards of different symmetries. All billiards are based on
almost equilateral triangles, i.e., � and � in the second and third
rows of the table are close to unity.

Disk billiard Decay exponent

Equilateral
�=�=1

v
R

ln
0.54 R

a

Isosceles
�=��1

v
R

ln
1.04 R

a

Generic
����1

v
R

ln
2 R

a

FIG. 10. Peaks of the autocorrelation function for the three-disk
billiard with �=�2, �=2, a=1, and R=104. The solid line repre-

sents e−��
�2�

t decay, with ��
�2� calculated according to Eq. �87�; the

dashed line corresponds to e−��2�t decay, with ��2� given by Eq. �37�.
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sequence ���= �i , j , . . . ,q ,r ,s� constituting the orbit ��. The
number M�tn� of all collision sequences ��� satisfying Eq.
�66� for t= tn, and therefore the number of interfering trajec-
tories, can be calculated with the help of the three-
dimensional transition matrix

�91�

in accordance with

M�tn� = �q3D
n �1,1. �92�

Here, as above, the subscript “1,1” denotes that the one-one
element of the matrix is taken. Then, the magnitude of the
autocorrelation function peak at time tn is given by
C�tn���M�tn��a /2R�n�2. For long times, n�1, the decrease
of the peak strength due to one collision can be written as

C�tn + R/v�
C�tn�

= � �q3D
n+1�1,1

�q3D
n �1,1

�2� a

2R
�2

n→�
——→ � a

R
�2

. �93�

Here we used that for n�1 the ratio of the matrix elements
in the last equation is given by the largest eigenvalue of the
matrix q3D, which is equal to 2. Therefore, we have

C�tn� � exp�− �3D
�3�tn� , �94�

where

�3D
�3� =

2v
R

ln
R

a
�95�

is the autocorrelation function decay rate for the three-sphere
equilateral billiard in three dimensions.

The classical decay rate is calculated in the
analogous way. According to Eq. �64� we write Ccl�tn�
�M�tn��a /2R�2n. Then,

Ccl�tn + R/v�
Ccl�tn�

=
�q3D

n+1�1,1

�q3D
n �1,1

� a

2R
�2

n→�
——→ � a

�2R
�2

�96�

and consequently

Ccl�tn� � exp�− �cl,3D
�3� tn� , �97�

where

�cl,3D
�3� =

2v
R

ln
�2R

a
�98�

is the classical autocorrelation function decay rate of the
three-sphere equilateral billiard. Below we will see that the
difference between �cl,3D

�3� and �3D
�3� is equal to the topological

entropy per unit time �which in this particular system coin-
cides with the KS entropy per unit time� of the chaotic re-
peller of the classical system.

Finally, we consider a substantially three-dimensional
scattering system—a tetrahedral billiard—where four
spheres of radius a are placed in the vertices of a pyramid
build of four equilateral triangles of sides R�a. The wave
packet starts on a line connecting two disks labeled by 1 and
2, see Fig. 11.

The calculation of the autocorrelation function decay ex-
ponent for this billiard proceeds in close analogy with the
three-sphere case considered above. The transition matrix
q̃3D is now a 12�12 matrix connecting directions �1→2�,
�1→3�, �1→4�, �2→1�, �2→3�, �2→4�, �3→1�, �3→2�,
�3→4�, �4→1�, �4→2�, and �4→3�. The structure of the
matrix is similar to the one given by Eq. �91� for the case of
the three-sphere billiard; the largest eigenvalue is now equal
to 3. As before the number of periodic trajectories contribut-
ing to the autocorrelation peak at time tn=nR /v, n=2,3 , . . .,
is given by Eq. �92� with q̃3D being the 12�12 transition
matrix of the four-sphere tetrahedral billiard. Then, the de-
crease of the autocorrelation function peak strength due to
one collision is given by

C�tn + R/v�
C�tn�

= � �q3D
n+1�1,1

�q3D
n �1,1

�2� a

2R
�2

n→�
——→ � 3a

2R
�2

, �99�

leading to

C�tn� � exp�− �3D
�4�tn� , �100�

with the four-sphere escape decay rate given by

�3D
�4� =

2v
R

ln
2R

3a
. �101�

The classical autocorrelation function decay rate for the
four-sphere tetrahedral billiard is obtained straightforwardly.
According to Eq. �64� we write

Ccl�tn + R/v�
Ccl�tn�

=
�q3D

n+1�1,1

�q3D
n �1,1

� a

2R
�2

n→�
——→ ��3a

2R
�2

. �102�

This results in

Ccl�tn� � exp�− �cl,3D
�4� tn� , �103�

with

FIG. 11. The tetrahedral four-sphere billiard. The wave packet is
initially placed between spheres 1 and 2, with its average momen-
tum directed toward sphere 2.
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�cl,3D
�4� =

2v
R

ln
2R
�3a

. �104�

The semiclassical decay rate �3D
�4� is again found to be slower

than the classical one �cl,3D
�4� . As we will show below the

difference between the two decay rates is given by the topo-
logical entropy per unit time of the four-sphere tetrahedral
billiard repeller.

Figure 12 shows relative magnitude of peaks of the wave
packet autocorrelation function for the three scattering sys-
tems considered above: two-sphere, three-sphere equilateral,
and four-sphere tetrahedral billiards. The radius of the sphere
scatterers is a=1, and the sphere center-to-center separation
is R=104. The semiclassical autocorrelation function decay
rates for these billiards are calculated according to Eqs. �90�,
�95�, and �101�, and presented in the figure by the dotted,
dashed, and solid lines, respectively. The figure illustrates the
reduction of escape of a semiclassical particle from a billiard
as additional scatterers are added to the latter. Below we
clarify the connection of the rate of this escape to classical
properties of the system’s chaotic repeller.

C. Classical and semiclassical escape rates

We would now like to comment on the connection of the
escape rates in classical and semiclassical open billiards to
such properties of classical chaotic systems as the mean
Lyapunov exponents, the Kolmogorov-Sinai �KS� entropy,
and topological entropy.

The classical escape rate �cl, which is equivalent to the
decay rate of the classical autocorrelation function, is known
to equal a difference of the stretching and randomization
rates in a chaotic system �31,40,42�,

�cl = 	
�i�0

�i − hKS. �105�

Here, the sum, going over all mean positive Lyapunov expo-
nents �i, represents the rate of the local exponential stretch-
ing of an initial particle phase space distribution, and hKS is
the KS entropy per unit time of the system characterizing the
rate at which the phase space distribution gets randomized
over the chaotic repeller of the scattering system. It was
pointed out by Gaspard and Rice �6� that the semiclassical
escape rate � for the three hard-disk scattering system in two
dimensions is given by

� � � − 2hKS, �106�

where � is the mean positive Lyapunov exponent of the cor-
responding chaotic repeller. Comparison of Eqs. �105� and
�106� shows that the semiclassical escape rate is never
greater than the escape rate in the counterpart classical sys-
tem, which is consistent with our observations earlier in this
section.

It is interesting to note that the equality in Eq. �106� can
be extended �and made exact� for the three-dimensional
hard-sphere billiards considered in this section, i.e., for the
two-sphere, three-sphere equilateral, and four-sphere tetrahe-
dral scattering systems. Moreover, Eq. �106� can be easily
derived for these billiards, since the KS entropy of the repel-
lers in these systems has an especially simple form. Indeed,
the independence of the hard-sphere differential cross section
on the scattering angle, evident from Eq. �88�, and the equal-
ity of lengths of all free flight segments composing the sys-
tem’s periodic orbit, result in equivalence of probability
weights for all trajectories of given length constituting the
chaotic repeller, see Eq. �65�. Since the probability measure
is the same for all periodic trajectories involving a given
number of collisions, the construction of the KS entropy is
identical to the construction of the topological entropy, e.g.,
see Ref. �42�. Therefore, for the particular three-dimensional
billiards of this section, the KS entropy per unit time hKS of
the repeller is simply equal to the topological entropy per
unit time htop. The latter is the rate of the exponential growth
with time t of the number of different collision sequences
M�t� a classical particle moving on the repeller can possibly
undergo

M�t� � exp�htopt� . �107�

For the two-sphere billiard there is only one periodic col-
lision sequence a particle staying on the repeller can follow.
Thus, M�t�=1 and

htop
�2� = 0. �108�

In the three-sphere equilateral billiard the number of possible
trajectories multiplies by two at every collision, so that
M�t�=2vt/R, leading to

htop
�3� =

v
R

ln 2. �109�

In the same way we conclude that in the four-sphere tetrahe-
dral billiard the number of possible collision sequences is

FIG. 12. Peaks of the wave packet autocorrelation function for
the three scattering systems: two-sphere �circles�, three-sphere equi-
lateral �triangles�, and four-sphere tetrahedral �diamonds� billiards.
In all cases the radius of the sphere scatterers is a=1, and the sphere
center-to-center separation is R=104. The semiclassical decay rates
for these billiards are calculated according to Eqs. �90�, �95�, and
�101�, and presented in the figure by the dotted, dashed, and solid
lines, respectively.
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M�t�=3vt/R, so that the topological entropy per unit time
reads

htop
�4� =

v
R

ln 3. �110�

Every trajectory �� of the three-dimensional hard-sphere
billiard repeller has two positive Lyapunov exponents �1����
and �2���� corresponding to perturbations of the particle’s
initial conditions in two directions perpendicular to the tra-
jectory. It is straightforward to show that the sum of the two
Lyapunov exponent for a dilute hard-sphere scattering sys-
tem R�a does not depend on the details of the trajectory ��,
and is given by �43�

�1 + �2 =
2v
R

ln
2R

a
. �111�

The last equality is obvious for the two-sphere periodic orbit,
since in that case �1=�2=��2�= �v /R�ln�2R /a�. In the case of
a general hard-sphere dilute scattering system the method of
curvature radii �18,31� can be used to prove Eq. �111�.

Looking at the expressions for the classical autocorrela-
tion function decay rates in the three-dimensional billiards
studied above, Eqs. �90�, �98�, and �104�, we notice that the
following relation holds:

�cl,3D
�j� = �1 + �2 − htop

�j� , �112�

with j=2,3 ,4. One can also verify that the semiclassical
decay rates, given by Eqs. �90�, �95�, and �101�, satisfy

�3D
�j� = �1 + �2 − 2htop

�j� . �113�

Equations �112� and �113� are the three-dimensional version
of Eqs. �105� and �106�, respectively.

The appearance of the factor of 2 in the expression for the
semiclassical decay rate is now apparent: the strength of the
wave packet partial reconstruction peaks C�t� is proportional
to M2�t� due to interference of different periodic orbits, while
in the classical case Ccl�t� is given merely by the sum of orbit
probabilities, and is proportional to M�t�. One can also see
now that the difference of the two escape rates is given by
the topological entropy �which, for the three-dimensional bil-
liards in question, is equal to the KS entropy� of the chaotic
repeller of the classical system, and is therefore determined
by underlying classical dynamics.

Finally, we would like to further clarify the appearance of
the factor of 2 in the expression for the semiclassical escape
rate �113� by means of the following simple argument. Con-
sider a classical periodic orbit �� of the period t, schemati-
cally depicted in Fig. 13, passing through the phase space
point around which the initial wave packet is localized. In a
general chaotic system the number of such periodic orbits
M�t� grows exponentially with the period t, and the rate of
this growth is given by the topological entropy per unit time
htop, see Eq. �107�. In order to determine the probability
weight D���t� of the orbit ��, one needs to consider a bundle
of trajectories which stay infinitesimally close to ��. These
trajectories form an exponentially thickening tube, see Fig.
13, with the initial and final cross sections A���0� and A���t�,
respectively, related by

A���t� = A���0�exp� 	
�j�����0

� j����t� . �114�

Here the sum goes over all positive Lyapunov exponents
� j���� of the periodic orbit ��. Then, the probability for a
classical particle taken at random from the trajectory bundle
to stay on the periodic orbit �� is proportional to the ratio
A���0� /A���t�, so that

D���t� � exp�− 	
�j�����0

� j����t� . �115�

Equation �115� together with Eq. �107� leads to the expres-
sion for the semiclassical escape rate in the case when the
sum over positive Lyapunov exponents 	� j���� does not sig-
nificantly depend on the details of the orbit ��, and can be
replaced by its average value 	� j. Then, the sum over orbits
���� in Eq. �63� is simply equal to the product of the number
of these orbits M�t� given by Eq. �107�, and the probability
amplitude �D�t� identical for all the orbits and calculated in
accordance with Eq. �115�. The substitution yields

C�t� � �M�t��D�t��2 � exp�− � 	
�j�0

� j − 2htop�� .

�116�

Thus, we recover the expression for the semiclassical auto-
correlation function decay rate �113� obtained for a number
of hard-sphere billiards in three spatial dimensions.

The purpose of the above oversimplified derivation is
only to illustrate the origin of the intimate relation between
the quantum escape rate and such properties of the underly-
ing classical chaotic system as the Lyapunov exponents and
topological �and/or KS� entropy. The details of this relation
as well as the limits of its applicability are yet to be investi-
gated.

IV. SUMMARY AND CONCLUSIONS

In the first part of this paper we used the technique of
multiple collision expansions to construct the quantum
propagator for a particle with the de Broglie wavelength �
traveling in an array of hard-disk scatterers of radius a��.
The scattering system was assumed to be so dilute that the
typical scatterer separation R satisfied the condition
R�a2 /�. The quantum propagator was used to analytically
calculate the time-dependent autocorrelation function for a

FIG. 13. Schematic picture of a classical periodic orbit �� to-
gether with an exponentially spreading tube of infinitesimally close
trajectories. The initial cross section of the tube A���0� gets magni-
fied to the value A���t�, given by Eq. �114�, after time t equal to the
period of the orbit ��.
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wave packet, initially localized in both position and momen-
tum spaces, evolving in open two- and three-disk billiard
systems. It was found that the autocorrelation function ex-
hibits a sequence of sharp peaks at times multiple to periods
of classical phase space periodic orbits of the billiards. These
peaks correspond to partial reconstructions of the initial
wave packet in the course of its time evolution. The envelope
of the correlation function decays exponentially with time
after one or two particle-disk collisions; the exponential de-
cay lasts for some a /��1 scattering events. Our calculations
recovered the autocorrelation function decay rate, obtained
in Ref. �6�, for a particle moving in the three-disk equilateral
billiard, and predicted the detailed structure and the decay
rate of the autocorrelation function for the more complicated
three-disk isosceles billiard.

In the second part of this paper the method of the semi-
classical Van Vleck propagator was utilized to derive a
simple expression for the relative magnitude of the wave
packet partial reconstruction peaks. Although it fails to de-
scribe the full time dependence of the autocorrelation func-
tion, this method allows one to calculate, analytically or nu-
merically, the decay rates of the autocorrelation function
envelope �also known as particle escape rates� for much
more complicated hard-disk and hard-sphere scattering sys-
tems. Here we used it to analyze the three-disk generic bil-
liard, the two-sphere, three-sphere equilateral, and three-
sphere tetrahedral scattering systems.

A straightforward modification of the semiclassical
method allowed us to construct the expression for the peaks
of the classical autocorrelation function, and to compare
classical and semiclassical particle escape rates in various
open hard-disk and hard-sphere billiards. The semiclassical
escape rate in three-dimensional scattering systems was
shown to be given by the difference of the sum of the two
positive Lyapunov exponents and twice the topological en-
tropy �in this case equal to the KS entropy� per unit time of
the underlying classical repeller. Thus, the semiclassical es-
cape rate is never greater then the classical one, and the
difference between the two equals the topological �or KS�
entropy per unit time of the classical system. This result is
consistent with the earlier findings of Ref. �6� for the case of
the two-dimensional hard-disk billiards, and therefore
strengthens the connection between classical and quantum
chaos.

An interesting seeming “paradox” arises if one compares
the expressions for the classical and semiclassical escape

rates, e.g., see Eqs. �112� and �113�. Indeed, according to the
correspondence principle it is expected that in the limit of the
de Broglie wavelength going to zero the semiclassical escape
rate should match its classical counterpart. This seems to be
incompatible with the results of this paper: the semiclassical
escape rate is expressed in terms of classical quantities only
�and does not depend on the de Broglie wavelength�, and �in
the case of hard-sphere billiards� is smaller than the classical
one by the value of the topological entropy of the system. In
fact, the difference of the two escape rates originates from
noncommutivity of the order in which the infinite time limit
and the classical �de Broglie wavelength going to zero� limit
are taken. This question has been carefully studied by Barra
and Gaspard for the case of quantum graphs �44�, as well as
discussed in Ref. �45�.
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APPENDIX: CIRCULAR WAVE PACKET EXPANSION

Here we derive the expansion of the circular wave packet
given by Eqs. �17� and �18�. The function �l�k ,k0�, defined in
Eq. �18�, can be put in the integral form �27�

�l�k,k0� =
2��

�
�

0

�

drrJl�kr�Jl�k0r� . �A1�

Then,

	
l=−�

+�

�l�k,k0�eil�
k−
k0
� =

2��

�
�

0

�

drr 	
l=−�

+�

Jl�kr�Jl�k0r�eil�
k−
k0
�

=
2��

�
�

0

�

drrJ0��k − k0�r� , �A2�

where the “summation theorem” for zeroth order Bessel
function �27� was used. Doing the simple integral we end up
with the equality

	
l=−�

+�

�l�k,k0�eil�
k−
k0
� = 2��

J0��k − k0���
�k − k0�

. �A3�
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